LA-UR-23-20188

Approved for public release; distribution is unlimited.

Title: Virtual tour of LANL plant science capabilities

Author(s): Sevanto, Sanna Annika

Intended for: USDA Forest Service Southern Office researcher visit Jan 11, 2023

Issued: 2023-01-09

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher dientify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Virtual tour of LANL plant science capabilities

Sanna Sevanto Earth and Environmental Sciences Division Los Alamos National Laboratory

USDA Forest Service visit, January 11th, 2023

- Climate change effects and mitigation
- Climate action verification
- Food and biofuel security
- Plants as biosensors

LANL Greenhouse capability

Temperature and light control, ambient humidity

Two walk-in size climate-controlled growth chambers: Temperature, humidity, light, CO₂

Experimental capabilities

Microbial inoculations

Natural soil hydrology Natural soil stratification

Climate change effects

Plant, Cell and Environment (2013)

doi: 10.1111/pce.12141

How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

SANNA SEVANTO¹, NATE G. MCDOWELL¹, L. TURIN DICKMAN¹, ROBERT PANGLE² & WILLIAM T. POCKMAN²

¹Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and ²Department of Biology, University of New Mexico, 219 Yale Blvd., Albuquerque, NM 87131, USA

Original Article

Tree water dynamics in a drying and warming world

Charlotte Grossiord D. Sanna Sevanto D. Isaac Borrego, Allison M. Chan, Adam D. Collins, Lee T. Dickman D. Patrick J. Hudson, Natalie McBranch¹, Sean T. Michaletz¹, William T. Pockman², Max Ryan¹, Alberto Vilagrosa³ & Nate G. McDowell⁴

A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

Effects of Soil Microbes on **Functional Traits of Loblolly Pine** (Pinus taeda) Seedling Families From Contrasting Climates

Danielle E. M. Ulrich 1*, Sanna Sevanto 2, Samantha Peterson 3, Max Ryan 2 and John Dunbar4

ORIGINAL ARTICLE

Stem radial growth and water storage responses to heat and drought vary between conifers with differing hydraulic strategies

Lee T. Dickman³ Lesteban Chirino⁵ L Juan Bellot^{1,2} Nate G. McDowell⁶

Ectomycorrhizal and Dark Septate Fungal Associations of Pinyon Pine Are Differentially Affected by **Experimental Drought and Warming**

Catherine Gehring 1*, Sanna Sevanto2, Adair Patterson1, Danielle E. M. Ulrich3 and Chervl R. Kuske⁴

Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

Danielle E. M. Ulrich^{1™}, Chaevien S. Clendinen², Franklin Alongi³, Rebecca C. Mueller⁴, Rosalie K. Chu², Jason Toyoda², La Verne Gallegos-Graves⁵, Hannah M. Goemann⁶, Brent Peyton7, Sanna Sevanto8 & John Dunbar5

Microbial impacts on terrestrial carbon cycling:

- -DOE BER BSSD SFA
- -Litter decomposing microbiomes differ in DOC and ${\rm CO_2}$ production

Microbial impacts on terrestrial carbon cycling:

-DOE BER BSSD SFA

-litter decomposing microbiomes differ in DOC and CO₂ production

Proximity to human habitat increases microbial N use efficiency during subsurface litter decomposition and leads to increased CO2 release

Climate action verification

Climate change mitigation and food security:

Microbial systems to control carbon cycling and plant drought

tolerance

Machine learning to understand complex systems

Dimensional reduction using Latent Dirichlet Allocation

Non-linear interactions with Probabilistic Graphical Modeling

Epigenetics for plants

Christina Steadman EES-14

Plants as biosensors Radiological Control Area